Entry effects of droplet in a micro confinement: Implications for deformation-based circulating tumor cell microfiltration.
نویسندگان
چکیده
Deformation-based circulating tumor cell (CTC) microchips are a representative diagnostic device for early cancer detection. This type of device usually involves a process of CTC trapping in a confined microgeometry. Further understanding of the CTC flow regime, as well as the threshold passing-through pressure, is a key to the design of deformation-based CTC filtration devices. In the present numerical study, we investigate the transitional deformation and pressure signature from surface tension dominated flow to viscous shear stress dominated flow using a droplet model. Regarding whether CTC fully blocks the channel inlet, we observe two flow regimes: CTC squeezing and shearing regime. By studying the relation of CTC deformation at the exact critical pressure point for increasing inlet velocity, three different types of cell deformation are observed: (1) hemispherical front, (2) parabolic front, and (3) elongated CTC co-flowing with carrier media. Focusing on the circular channel, we observe a first increasing and then decreasing critical pressure change with increasing flow rate. By pressure analysis, the concept of optimum velocity is proposed to explain the behavior of CTC filtration and design optimization of CTC filter. Similar behavior is also observed in channels with symmetrical cross sections like square and triangular but not in rectangular channels which only results in decreasing critical pressure.
منابع مشابه
Mathematical Modeling for Homogeneous Tumor with Delay in Time
Due to the properties of tumor cell, the tumor establishes itself in the organ and grows there, so there is a competition between the tumor cells and host cell (normal cells) for nutrients. Evidences show that high dietary phosphorus increases the rate of protein synthesis and thus the cell number. So, other than oxygen, sulfur, the important element that both tumor cells and normal cells need ...
متن کاملLattice Boltzmann Simulation of Deformation and Breakup of a Droplet under Gravity Force Using Interparticle Potential Model
Abstract In this paper interparticle potential model of the lattice Boltzmann method (LBM) is used to simulate deformation and breakup of a falling droplet under gravity force. First this model is applied to ensure that the surface tension effect is properly implemented in this model. Two tests have been considered. First, it has been checked an initial square drop in a 2D domain can freely def...
متن کاملThe effect of confinement-induced shear on drop deformation and breakup in microfluidic extensional flows
Droplets of de-ionized water and four aqueous surfactant solutions were generated in oil using a microfluidic flow-focusing device. The morphological developments of the drops in extensional flow and confinement-induced shear flow at various extension rates were studied using a hyperbolic contraction. This novel approach to droplet deformation within a microfluidic device allowed the probing of...
متن کاملDroplet-String Deformation and Stability during Microconfined Shear Flow
We have performed experiments on model emulsions of polyisobutylene (PIB) and poly(dimethylsiloxane) (PDMS) to quantify the effect of confinement on deformation and stability under flow of droplets and strings (threads). It is known from earlier work from our group that, under confinement, droplets in concentrated emulsions can coalesce with each other and elongate in the flow direction to form...
متن کاملDroplet dynamics in confinement
This study is to understand confinement effect on the dynamical behaviour of a droplet immersed in an immiscible liquid subjected to a simple shear flow. The lattice Boltzmann method, which uses a forcing term and a recolouring algorithm to realize the interfacial tension effect and phase separation respectively, is adopted to systematically study droplet deformation and breakup in confined con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomicrofluidics
دوره 9 2 شماره
صفحات -
تاریخ انتشار 2015